425740

D 50672

(**Pages : 4**)

Nar	ne	 	 ••
Reg	. No	 	

FIFTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2023

Mathematics

MTS 5D 03-LINEAR MATHEMATICAL MODELS

(2020 Admission onwards)

Time : Two Hours

Maximum : 60 Marks

Section A

Answer any number of questions. Each question carries 2 marks. Ceiling is 20.

1. Find the equation of the line through (4, 2) and (1, 3) in slope intercept form.

- 2. Find k so that the line through (4, -1) and (k, 2) is perpendicular to 5x 2y = -1.
- 3. Solve the system of equations using echelon method :

 $\frac{x}{2} + y = \frac{3}{2}$ $\frac{x}{3} + y = \frac{1}{3}.$

- 4. Let $A = \begin{bmatrix} -2 & 4 \\ 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -6 & 2 \\ 4 & 0 \end{bmatrix}$. Find 7B 3A.
- 5. Find the values of variables in the matrix equation $\begin{bmatrix} 2 & x \\ y & 6 \\ 5 & z \end{bmatrix} = \begin{bmatrix} a & -1 \\ 4 & 6 \\ p & 7 \end{bmatrix}.$
- 6. Graph the linear inequality $2x 3y \le 12$.

Turn over

425740

D 50672

7. Graph the feasible region for the following system of inequalities and tell whether the region is bounded or unbounded :

 $x + y \le 1$ $x - y \ge 2.$

8. Identify all variables used and express the statement given below as linear inequalities :

Product A requires 3 hours on a machine, while product B needs 5 hours on the same machine. The machine is available for at most 60 hours per week.

9. Use the graphical method to solve the following linear programming problem :

```
Maximize z = 2x + 4y
subject to 3x + 2y \le 12
5x + y \ge 5
x \ge 0, y \ge 0.
```

10. Set up the initial tableau for the following linear programming problem :

 $\begin{array}{ll} \text{Maximize } z = 120x_1 + 40x_2 + 60x_3 \\ \text{subject to} & x_1 + x_2 + x_3 \leq 100 \\ & 10x_1 + 4x_2 + 7x_3 \leq 500 \\ & \text{with } x_1 \geq 0, \, x_2 \geq 0, \, x_3 \geq 0. \end{array}$

11. Write the solution that can be read from the following simplex tableau :

x_1	x_2	x_3	s_1	s_2	z	
1	0	4	5	1	0	8
	0 1					
-2	0	2	3	0	1	28

12. Explain standard minimum form of a linear programming problem.

425740

D 50672

3 Section B

Answer any number of questions. Each question carries 5 marks. Ceiling is 30.

- 13. The sales of a small company were \$27,000 in its second year of operation and \$63,000 in its fifth year. Let y represent sales in the xth year of operation. Assume that the data can be approximated by a straight line.
 - a) Find the slope of the sales line, and give an equation for the line in the form y = mx + b.
 - b) Use your answer from part (a) to find out how many years must pass before the sales surpass \$1,00,000.
- 14. Consider the following table of data :

x	:	1	1	2	2	9
у	:	1	2	1	2	9

Calculate the least square line and the correlation co-efficient.

15. Explain briefly Gauss-Jordan method to solve the linear system.

16. Find the inverse of A =
$$\begin{bmatrix} -1 & -1 & -1 \\ 4 & 5 & 0 \\ 0 & 1 & -3 \end{bmatrix}$$
.

17. Using the open model, find the production matrix for the input - output matrix $A = \begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \end{bmatrix}$

and demand matrix $D = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

18. Introduce slack variables as necessary and write the initial simplex tableau for the linear programming problem given below :

Find $x_1 \ge 0$ and $x_2 \ge 0$ such that $4x_1 + 2x_2 \le 5$ $x_1 + 2x_2 \le 4$ and $z = 7x_1 + x_2$ is maximized.

Turn over

425740

D 50672

4

19. Pivot about indicated 2 of the following initial simplex tableau :

x_1	x_2	x_3	s_1	s_2	z	
1	$egin{array}{c} x_2 \ 2 \end{array}$	4	1	0	0	56
2	2	1	0	1	0	40
-1	- 3	-2	0	0	1	0

Section C

Answer any **one** question. The question carries 10 marks.

20. Solve the following system of equations by finding inverse of the co-efficient matrix by Gauss - Jordan method :

x + 3y - 2z = 4 2x + 7y - 3z = 83x + 8y - 5z = -4.

21. Find the dual of the following linear programming problem and solve using simplex method :

 $\begin{array}{ll} \mbox{Minimize } w = 3y_1 + 2y_2 \\ \mbox{subject to} & y_1 + 3y_2 \geq 6 \\ & 2y_1 + y_2 \geq 3 \\ & \mbox{with } y_1 \geq 0, \, y_2 \geq 0. \end{array}$

 $(1 \times 10 = 10 \text{ marks})$